Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
BMC Immunol ; 24(1): 52, 2023 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-38082384

RESUMO

BACKGROUND: Cellular states of different immune cells can affect the activity of the whole immune microenvironment. METHODS: Here, leveraging reference profiles of microenvironment cell states that were constructed based on single-cell RNA-seq data of melanoma, we dissected the composition of microenvironment cell states across 463 skin cutaneous melanoma (SKCM) bulk samples through CIBERSORT-based deconvolution of gene expression profiles and revealed high heterogeneity of their distribution. Correspondence analysis on the estimated cellular fractions of melanoma bulk samples was performed to identify immune phenotypes. Based on the publicly available clinical survival and therapy data, we analyzed the relationship between immune phenotypes and clinical outcomes of melanoma. RESULTS: By analysis of the relationships among those cell states, we further identified three distinct tumor microenvironment immune phenotypes: "immune hot/active", "immune cold-suppressive" and "immune cold-exhausted". They were characterized by markedly different patterns of cell states: most notably the CD8 T Cytotoxic state, CD8 T Mixed state, B non-regulatory state and cancer-associated fibroblasts (CAFs), depicting distinct types of antitumor immune response (or immune activity). These phenotypes had prognostic significance for progression-free survival and implications in response to immune therapy in an independent cohort of anti-PD1 treated melanoma patients. CONCLUSIONS: The proposed strategy of leveraging single-cell data to dissect the composition of microenvironment cell states in individual bulk tumors can also extend to other cancer types, and our results highlight the importance of microenvironment cell states for the understanding of tumor immunity.


Assuntos
Melanoma , Neoplasias Cutâneas , Humanos , Melanoma/genética , Neoplasias Cutâneas/genética , Perfilação da Expressão Gênica , Terapia de Imunossupressão , Fenótipo , Microambiente Tumoral , Transcriptoma , Prognóstico
2.
Biol Direct ; 18(1): 79, 2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-37993951

RESUMO

BACKGROUND: MicroRNAs (miRNAs) play critical roles in cancer initiation and progression, which were critical components to maintain the dynamic balance of competing endogenous RNA (ceRNA) networks. Somatic copy number alterations (SCNAs) in the cancer genome could disturb the transcriptome level of miRNA to deregulate this balance. However, the driving effects of SCNAs of miRNAs were insufficiently understood. METHODS: In this study, we proposed a method to dissect the functional roles of miRNAs under different copy number states and identify driver miRNAs by integrating miRNA SCNAs profile, miRNA-target relationships and expression profiles of miRNA, mRNA and lncRNA. RESULTS: Applying our method to 813 TCGA breast cancer (BRCA) samples, we identified 29 driver miRNAs whose SCNAs significantly and concordantly regulated their own expression levels and further inversely dysregulated expression levels of their targets or disturbed the miRNA-target networks they directly involved. Based on miRNA-target networks, we further constructed dynamic ceRNA networks driven by driver SCNAs of miRNAs and identified three different patterns of SCNA interference in the miRNA-mediated dynamic ceRNA networks. Survival analysis of driver miRNAs showed that high-level amplifications of four driver miRNAs (including has-miR-30d-3p, has-mir-30b-5p, has-miR-30d-5p and has-miR-151a-3p) in 8q24 characterized a new BRCA subtype with poor prognosis and contributed to the dysfunction of cancer-associated hallmarks in a complementary way. The SCNAs of driver miRNAs across different cancer types contributed to the cancer development by dysregulating different components of the same cancer hallmarks, suggesting the cancer specificity of driver miRNA. CONCLUSIONS: These results demonstrate the efficacy of our method in identifying driver miRNAs and elucidating their functional roles driven by endogenous SCNAs, which is useful for interpreting cancer genomes and pathogenic mechanisms.


Assuntos
Neoplasias da Mama , MicroRNAs , RNA Longo não Codificante , Humanos , Feminino , MicroRNAs/genética , MicroRNAs/metabolismo , Variações do Número de Cópias de DNA , Redes Reguladoras de Genes , Transcriptoma , Neoplasias da Mama/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Regulação Neoplásica da Expressão Gênica
3.
Mol Oncol ; 17(11): 2472-2490, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37491836

RESUMO

High heterogeneity in genome and phenotype of cancer populations made it difficult to apply population-based common driver genes to the diagnosis and treatment of cancer individuals. Characterizing and identifying the personalized driver mechanism for glioblastoma multiforme (GBM) individuals were pivotal for the realization of precision medicine. We proposed an integrative method to identify the personalized driver gene sets by integrating the profiles of gene expression and genetic alterations in cancer individuals. This method coupled genetic algorithm and random walk to identify the optimal gene sets that could explain abnormality of transcriptome phenotype to the maximum extent. The personalized driver gene sets were identified for 99 GBM individuals using our method. We found that genomic alterations in between one and seven driver genes could maximally and cumulatively explain the dysfunction of cancer hallmarks across GBM individuals. The driver gene sets were distinct even in GBM individuals with significantly similar transcriptomic phenotypes. Our method identified MCM4 with rare genetic alterations as previously unknown oncogenic genes, the high expression of which were significantly associated with poor GBM prognosis. The functional experiments confirmed that knockdown of MCM4 could significantly inhibit proliferation, invasion, migration, and clone formation of the GBM cell lines U251 and U118MG, and overexpression of MCM4 significantly promoted the proliferation, invasion, migration, and clone formation of the GBM cell line U87MG. Our method could dissect the personalized driver genetic alteration sets that are pivotal for developing targeted therapy strategies and precision medicine. Our method could be extended to identify key drivers from other levels and could be applied to more cancer types.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Transcriptoma/genética , Genômica , Mutação , Perfilação da Expressão Gênica , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/metabolismo , Regulação Neoplásica da Expressão Gênica
4.
Stem Cells ; 41(2): 111-125, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36583266

RESUMO

Glioblastoma stem cells (GSCs) contributed to the progression, treatment resistance, and relapse of glioblastoma (GBM). However, current researches on GSCs were performed usually outside the human tumor microenvironment, ignoring the importance of the cellular states of primary GSCs. In this study, we leveraged single-cell transcriptome sequencing data of 6 independent GBM cohorts from public databases, and combined lineage and stemness features to identify primary GSCs. We dissected the cell states of GSCs and correlated them with the clinical outcomes of patients. As a result, we constructed a cellular hierarchy where GSCs resided at the center. In addition, we identified and characterized 2 different and recurrent GSCs subpopulations: proliferative GSCs (pGSCs) and quiescent GSCs (qGSCs). The pGSCs showed high cell cycle activity, indicating rapid cell division, while qGSCs showed a quiescent state. Then we traced the processes of tumor development by pseudo-time analysis and tumor phylogeny, and found that GSCs accumulated throughout the whole tumor development period. During the process, pGSCs mainly contributed to the early stage and qGSCs were enriched in the later stage. Finally, we constructed an 8-gene prognostic signature reflecting pGSCs activity and found that patients whose tumors were enriched for the pGSC signature had poor clinical outcomes. Our study highlights the primary GSCs heterogeneity and its correlation to tumor development and clinical outcomes, providing the potential targets for GBM treatment.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/patologia , Células-Tronco Neoplásicas/metabolismo , Neoplasias Encefálicas/metabolismo , Linhagem Celular Tumoral , Análise de Célula Única , Microambiente Tumoral/genética
5.
Hum Mutat ; 43(12): 2187-2204, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36218010

RESUMO

The clonal mutations in driver genes enable cells to gradually acquire growth advantage in tumor development. Therefore, revealing the functions of clonal driver gene mutations is important. Here, we proposed the method FCMP that considered evolutionary dependencies to analyze the functions of clonal driver gene mutations in a single patient. Applying our method to five cancer types from The Cancer Genome Atlas, we identified specific functions and common functions of clonal driver gene mutations. We found that the clonal driver gene mutations in the same patient played multiple functions. We also found that clonal mutations in the same driver gene performed different functions in different patients. These findings suggested that the clonal driver gene mutations showed strong tumor heterogeneity. In the pan-cancer analysis, the immune-related functions for clonal driver gene mutations were shared by multiple cancer types. In addition, clonal mutations in some driver genes predicted the survival of patients in cancers.


Assuntos
Neoplasias , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia
6.
Sci Rep ; 12(1): 10641, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35739271

RESUMO

Differences in genetic molecular features including mutation, copy number alterations and DNA methylation, can explain interindividual variability in response to anti-cancer drugs in cancer patients. However, identifying genetic alteration-driven genes and characterizing their functional mechanisms in different cancer types are still major challenges for cancer studies. Here, we systematically identified functional regulations between genetic alteration-driven genes and drug target genes and their potential prognostic roles in breast cancer. We identified two mutation and copy number-driven gene pairs (PARP1-ACSL1 and PARP1-SRD5A3), three DNA methylation-driven gene pairs (PRLR-CDKN1C, PRLR-PODXL2 and PRLR-SRD5A3), six gene pairs between mutation-driven genes and drug target genes (SLC19A1-SLC47A2, SLC19A1-SRD5A3, AKR1C3-SLC19A1, ABCB1-SRD5A3, NR3C2-SRD5A3 and AKR1C3-SRD5A3), and four copy number-driven gene pairs (ADIPOR2-SRD5A3, CASP12-SRD5A3, SLC39A11-SRD5A3 and GALNT2-SRD5A3) that all served as prognostic biomarkers of breast cancer. In particular, RARP1 was found to be upregulated by simultaneous copy number amplification and gene mutation. Copy number deletion and downregulated expression of ACSL1 and upregulation of SRD5A3 both were observed in breast cancers. Moreover, copy number deletion of ACSL1 was associated with increased resistance to PARP inhibitors. PARP1-ACSL1 pair significantly correlated with poor overall survival in breast cancer owing to the suppression of the MAPK, mTOR and NF-kB signaling pathways, which induces apoptosis, autophagy and prevents inflammatory processes. Loss of SRD5A3 expression was also associated with increased sensitivity to PARP inhibitors. The PARP1-SRD5A3 pair significantly correlated with poor overall survival in breast cancer through regulating androgen receptors to induce cell proliferation. These results demonstrate that genetic alteration-driven gene pairs might serve as potential biomarkers for the prognosis of breast cancer and facilitate the identification of combination therapeutic targets for breast cancers.


Assuntos
Neoplasias da Mama , Biomarcadores Tumorais/genética , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/genética , Variações do Número de Cópias de DNA/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Mutação , Inibidores de Poli(ADP-Ribose) Polimerases , Prognóstico
7.
Genomics ; 114(4): 110412, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35714828

RESUMO

Tumors are genetically heterogeneous and many mutations are actually present in subclonal populations. The clonal status of mutations is valuable for accurate prognosis, clinical management. The aim of this study was to identify the clonal status of somatic mutations and systematically evaluate their prognostic values across various cancer types. We totally identified 227 clonal and 432 subclonal mutations contributed to prognosis and demonstrated the importance of clonal status in improving mutation-related clinical guidance. We further developed a customized multi-step approach to identify gene-specific prognostic patterns of clonal status at pan-cancer level and found some cancer-specific prognostic patterns. The 'subclonal-dependent risk' subpattern was one of the most common subpatterns, it usually accompanied by high genomic in-stability and high extent of intra-tumor heterogeneity and could be used to improve the accuracy of prognostic analysis. Our results revealed the importance of clonal status, especially subclonal mutation in clinical survival.


Assuntos
Neoplasias , Evolução Clonal , Genômica , Humanos , Mutação , Neoplasias/genética , Neoplasias/patologia , Prognóstico
8.
Brief Bioinform ; 23(3)2022 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-35229870

RESUMO

Interaction between tumor cells and immune cells determined highly heterogeneous microenvironments across patients, leading to substantial variation in clinical benefits from immunotherapy. Somatic gene mutations were found not only to elicit adaptive immunity but also to influence the composition of tumor immune microenvironment and various processes of antitumor immunity. However, due to an incomplete view of associations between gene mutations and immunophenotypes, how tumor cells shape the immune microenvironment and further determine the clinical benefit of immunotherapy is still unclear. To address this, we proposed a computational approach, inference of mutation effect on immunophenotype by integrated gene set enrichment analysis (MEIGSEA), for tracing back the genomic factor responsible for differences in immunophenotypes. MEIGSEA was demonstrated to accurately identify the previous confirmed immune-associated gene mutations, and systematic evaluation in simulation data further supported its performance. We used MEIGSEA to investigate the influence of driver gene mutations on the infiltration of 22 immune cell types across 19 cancers from The Cancer Genome Atlas. The top associated gene mutations with infiltration of CD8 T cells, such as CASP8, KRAS and EGFR, also showed extensive impact on other immune components; meanwhile, immune effector cells shared critical gene mutations that collaboratively contribute to shaping distinct tumor immune microenvironment. Furthermore, we highlighted the predictive capacity of gene mutations that are positively associated with CD8 T cells for the clinical benefit of immunotherapy. Taken together, we present a computational framework to help illustrate the potential of somatic gene mutations in shaping the tumor immune microenvironment.


Assuntos
Neoplasias , Microambiente Tumoral , Biomarcadores Tumorais/genética , Linfócitos T CD8-Positivos , Humanos , Imunoterapia , Mutação , Neoplasias/genética , Microambiente Tumoral/genética
9.
Mol Ther Nucleic Acids ; 26: 1115-1129, 2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34786214

RESUMO

T cells exhibit heterogeneous functional states, which correlate with responsiveness to immune checkpoint blockade and prognosis of tumor patients. However, the molecular regulatory mechanisms underlying the dynamic process of T cell state transition remain largely unknown. Based on single-cell transcriptome data of T cells in non-small cell lung cancer, we combined cell states and pseudo-times to propose a pipeline to construct dynamic regulatory networks for dissecting the process of T cell dysfunction. Candidate regulators at different stages were revealed in the process of tumor-infiltrating T cell dysfunction. Through comparing dynamic networks across the T cell state transition, we revealed frequent regulatory interaction rewiring and further refined critical regulators mediating each state transition. Several known regulators were identified, including TCF7, EOMES, ID2, and TOX. Notably, one of the critical regulators, TSC22D3, was frequently identified in the state transitions from the intermediate state to the pre-dysfunction and dysfunction state, exerting diverse roles in each state transition by regulatory interaction rewiring. Moreover, higher expression of TSC22D3 was associated with the clinical outcome of tumor patients. Our study embedded transcription factors (TFs) within the temporal dynamic networks, providing a comprehensive view of dynamic regulatory mechanisms controlling the process of T cell state transition.

10.
Front Immunol ; 12: 758288, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34804045

RESUMO

The infiltration of tumor-reactive T cells in the tumor site is associated with better survival and immunotherapy response. However, tumor-reactive T cells were often represented by the infiltration of total CD8+ T cells, which was confounded by the presence of bystander T cells. To identify tumor-reactive T cells at the cancer lesion, we performed integration analyses of three scRNA-seq data sets of T cells in melanoma. Extensive heterogeneous functional states of T cells were revealed in the tumor microenvironment. Among these states, we identified a subset of tumor-reactive T cells which specifically expressed tumor-reactive markers and T cell activation signature, and were strongly enriched for larger T cell receptor (TCR) clones. We further identified and validated a tumor-reactive T cell signature (TRS) to evaluate the tumor reactivity of T cells in tumor patients. Patients with high TRS scores have strong immune activity and high mutation burden in the TCGA-SKCM cohort. We also demonstrated a significant association of the TRS with the clinical outcomes of melanoma patients, with higher TRS scores representing better survival, which was validated in four external independent cohorts. Furthermore, the TRS scores exhibited greater performance on prognosis prediction than infiltration levels of CD8+ T cells and previously published prognosis-related signatures. Finally, we observed the capability of TRS to predict immunotherapy response in melanoma. Together, based on integrated analysis of single-cell RNA-sequencing, we developed and validated a tumor-reactive-related signature that demonstrated significant association with clinical outcomes and response to immunotherapy.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Imunoterapia , Linfócitos do Interstício Tumoral/imunologia , Melanoma/genética , Análise de Célula Única , Subpopulações de Linfócitos T/imunologia , Transcriptoma , Sequência de Bases , Linfócitos T CD8-Positivos/metabolismo , Células Clonais , Conjuntos de Dados como Assunto , Humanos , Inibidores de Checkpoint Imunológico/uso terapêutico , Estimativa de Kaplan-Meier , Linfócitos do Interstício Tumoral/metabolismo , Melanoma/imunologia , Prognóstico , RNA Neoplásico/genética , Receptores de Antígenos de Linfócitos T/genética , Subpopulações de Linfócitos T/metabolismo , Resultado do Tratamento
11.
PeerJ ; 9: e12070, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34527446

RESUMO

BACKGROUND: Glioblastoma multiforme (GBM) is a highly, malignant tumor of the primary central nervous system. Patients diagnosed with this type of tumor have a poor prognosis. Lymphocyte activation plays important roles in the development of cancers and its therapeutic treatments. OBJECTIVE: We sought to identify an efficient lymphocyte activation-associated gene signature that could predict the progression and prognosis of GBM. METHODS: We used univariate Cox proportional hazards regression and stepwise regression algorithm to develop a lymphocyte activation-associated gene signature in the training dataset (TCGA, n = 525). Then, the signature was validated in two datasets, including GSE16011 (n = 150) and GSE13041 (n = 191) using the Kaplan Meier method. Univariate and multivariate Cox proportional hazards regression models were used to adjust for clinicopathological factors. RESULTS: We identified a lymphocyte activation-associated gene signature (TCF3, IGFBP2, TYRO3 and NOD2) in the training dataset and classified the patients into high-risk and low-risk groups with significant differences in overall survival (median survival 15.33 months vs 12.57 months, HR = 1.55, 95% CI [1.28-1.87], log-rank test P < 0.001). This signature showed similar prognostic values in the other two datasets. Further, univariate and multivariate Cox proportional hazards regression models analysis indicated that the signature was an independent prognostic factor for GBM patients. Moreover, we determined that there were differences in lymphocyte activity between the high- and low-risk groups of GBM patients among all datasets. Furthermore, the lymphocyte activation-associated gene signature could significantly predict the survival of patients with certain features, including IDH-wildtype patients and patients undergoing radiotherapy. In addition, the signature may also improve the prognostic power of age. CONCLUSIONS: In summary, our results suggested that the lymphocyte activation-associated gene signature is a promising factor for the survival of patients, which is helpful for the prognosis of GBM patients.

12.
Cancer Med ; 10(14): 4977-4993, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34076361

RESUMO

BACKGROUND: Lung adenocarcinoma (LUAD), as the most common subtype of lung cancer, is the leading cause of cancer deaths in the world. The accumulation of driver gene mutations enables cancer cells to gradually acquire growth advantage. Therefore, it is important to understand the functions and interactions of driver gene mutations in cancer progression. METHODS: We obtained gene mutation data and gene expression profile of 506 LUAD tumors from The Cancer Genome Atlas (TCGA). The subtypes of tumors with driver gene mutations were identified by consensus cluster analysis. RESULTS: We found 21 significantly mutually exclusive pairs consisting of 20 genes among 506 LUAD patients. Because of the increased transcriptomic heterogeneity of mutations, we identified subtypes among tumors with non-silent mutations in driver genes. There were 494 mutually exclusive pairs found among driver gene mutations within different subtypes. Furthermore, we identified functions of mutually exclusive pairs based on the hypothesis of functional redundancy of mutual exclusivity. These mutually exclusive pairs were significantly enriched in nuclear division and humoral immune response, which played crucial roles in cancer initiation and progression. We also found 79 mutually exclusive triples among subtypes of tumors with driver gene mutations, which were key roles in cell motility and cellular chemical homeostasis. In addition, two mutually exclusive triples and one mutually exclusive triple were associated with the overall survival and disease-specific survival of LUAD patients, respectively. CONCLUSIONS: We revealed novel mutual exclusivity and generated a comprehensive functional landscape of driver gene mutations, which could offer a new perspective to understand the mechanisms of cancer development and identify potential biomarkers for LUAD therapy.


Assuntos
Adenocarcinoma de Pulmão/genética , Progressão da Doença , Neoplasias Pulmonares/genética , Mutação/genética , Transcriptoma/genética , Adenocarcinoma de Pulmão/mortalidade , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Heterogeneidade Genética , Fenômenos Genéticos , Humanos , Neoplasias Pulmonares/mortalidade , Mutação/fisiologia
13.
Front Genet ; 12: 654736, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34163522

RESUMO

Somatic copy-number alterations (SCNAs) are major contributors to cancer development that are pervasive and highly heterogeneous in human cancers. However, the driver roles of SCNAs in cancer are insufficiently characterized. We combined network propagation and linear regression models to design an integrative strategy to identify driver SCNAs and dissect the functional roles of SCNAs by integrating profiles of copy number and gene expression in lower-grade glioma (LGG). We applied our strategy to 511 LGG patients and identified 98 driver genes that dysregulated 29 cancer hallmark signatures, forming 143 active gene-hallmark pairs. We found that these active gene-hallmark pairs could stratify LGG patients into four subtypes with significantly different survival times. The two new subtypes with similar poorest prognoses were driven by two different gene sets (one including EGFR, CDKN2A, CDKN2B, INFA8, and INFA5, and the other including CDK4, AVIL, and DTX3), respectively. The SCNAs of the two gene sets could disorder the same cancer hallmark signature in a mutually exclusive manner (including E2F_TARGETS and G2M_CHECKPOINT). Compared with previous methods, our strategy could not only capture the known cancer genes and directly dissect the functional roles of their SCNAs in LGG, but also discover the functions of new driver genes in LGG, such as IFNA5, IFNA8, and DTX3. Additionally, our method can be applied to a variety of cancer types to explore the pathogenesis of driver SCNAs and improve the treatment and diagnosis of cancer.

14.
Cancer Med ; 9(24): 9485-9498, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33078899

RESUMO

Accurately classifying patients with non-small cell lung cancer (NSCLC) from the perspective of tumor evolution has not been systematically studied to date. Here, we reconstructed phylogenetic relationships of somatic mutations in 100 early NSCLC patients (327 lesions) through reanalyzing the TRACERx data. Based on the genomic evolutionary patterns presented on the phylogenetic trees, we grouped NSCLC patients into three evolutionary subtypes. The phylogenetic trees among three subtypes exhibited distinct branching structures, with one subtype representing branched evolution and another reflecting the early accumulation of genomic variation. However, in the evolutionary pattern of the third subtype, some mutations experienced selective sweeps and were gradually replaced by multiple newly formed subclonal populations. The subtype patients with poor prognosis had higher intra-tumor heterogeneity and subclonal diversity. We combined genomic heterogeneity with clinical phenotypes analysis and found that subclonal expansion results in the progression and deterioration of the tumor. The molecular mechanisms of subtype-specific Early Driver Feature (EDF) genes differed across the evolutionary subtypes, reflecting the characteristics of the subtype itself. In summary, our study provided new insights on the stratification of NSCLC patients based on genomic evolution that can be valuable for us to understand the development of pulmonary tumor profoundly.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/classificação , Neoplasias Pulmonares/classificação , Mutação , Filogenia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Evolução Clonal , Biologia Computacional , Bases de Dados Genéticas , Genômica , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Prognóstico , Taxa de Sobrevida
15.
Mol Ther Nucleic Acids ; 21: 464-479, 2020 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-32668393

RESUMO

Somatic copy-number alterations (SCNAs) drive tumor growth and evolution. However, the functional roles of SCNAs across the genome are still poorly understood. We provide an integrative strategy to characterize the functional roles of driver SCNAs in cancers based on dysregulated competing endogenous RNA (ceRNA) networks. We identified 44 driver SCNAs in lower-grade glioma (LGG). The dysregulated patterns losing all correlation relationships dominated dysregulated ceRNA networks. Homozygous deletion of six genes in 9p21.3 characterized an LGG subtype with poor prognosis and contributed to the dysfunction of cancer-associated pathways in a complementary way. The pan-cancer analysis showed that different cancer types harbored different driver SCNAs through dysregulating the crosstalk with common ceRNAs. The same SCNAs destroyed their ceRNA networks through different miRNA-mediated ceRNA regulations in different cancers. Additionally, some SCNAs performed different functional mechanisms in different cancers, which added another layer of complexity to cancer heterogeneity. Compared with previous methods, our strategy could directly dissect functional roles of SCNAs from the view of ceRNA networks, which not only complemented the functions of protein-coding genes but also provided a new avenue to characterize the functions of noncoding RNAs. Also, our strategy could be applied to more types of cancers to identify pathogenic mechanism driven by the SCNAs.

16.
Artigo em Inglês | MEDLINE | ID: mdl-32117908

RESUMO

Engineered organoids by sequential introduction of key mutations could help modeling the dynamic cancer progression. However, it remains difficult to determine gene paths which were sufficient to capture cancer behaviors and to broadly explain cancer mechanisms. Here, as a case study of colorectal cancer (CRC), functional and dynamic characterizations of five types of engineered organoids with different mutation combinations of five driver genes (APC, SMAD4, KRAS, TP53, and PIK3CA) showed that sequential introductions of all five driver mutations could induce enhanced activation of more hallmark signatures, tending to cancer. Comparative analysis of engineered organoids and corresponding CRC tissues revealed sequential introduction of key mutations could continually shorten the biological distance from engineered organoids to CRC tissues. Nevertheless, there still existed substantial biological gaps between the engineered organoid even with five key mutations and CRC samples. Thus, we proposed an integrative strategy to prioritize gene cascading paths for shrinking biological gaps between engineered organoids and CRC tissues. Our results not only recapitulated the well-known adenoma-carcinoma sequence model (e.g., AKST-organoid with driver mutations in APC, KRAS, SMAD4, and TP53), but also provided potential paths for delineating alternative pathogenesis underlying CRC populations (e.g., A-organoid with APC mutation). Our strategy also can be applied to both organoids with more mutations and other cancers, which can improve and innovate mechanism across cancer patients for drug design and cancer therapy.

17.
Front Genet ; 11: 633455, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33505440

RESUMO

Glioblastoma (GBM) is characterized by rapid and lethal infiltration of brain tissue, which is the primary cause of treatment failure and deaths for GBM. Therefore, understanding the molecular mechanisms of tumor cell invasion is crucial for the treatment of GBM. In this study, we dissected the single-cell RNA-seq data of 3345 cells from four patients and identified dysregulated genes including long non-coding RNAs (lncRNAs), which were involved in the development and progression of GBM. Based on co-expression network analysis, we identified a module (M1) that significantly overlapped with the largest number of dysregulated genes and was confirmed to be associated with GBM invasion by integrating EMT signature, experiment-validated invasive marker and pseudotime trajectory analysis. Further, we denoted invasion-associated lncRNAs which showed significant correlations with M1 and revealed their gradually increased expression levels along the tumor cell invasion trajectory, such as VIM-AS1, WWTR1-AS1, and NEAT1. We also observed the contribution of higher expression of these lncRNAs to poorer survival of GBM patients. These results were mostly recaptured in another validation data of 7930 single cells from 28 GBM patients. Our findings identified lncRNAs that played critical roles in regulating or controlling cell invasion and migration of GBM and provided new insights into the molecular mechanisms underlying GBM invasion as well as potential targets for the treatment of GBM.

18.
PLoS One ; 14(8): e0221483, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31415668

RESUMO

[This corrects the article DOI: 10.1371/journal.pone.0104282.].

19.
Nucleic Acids Res ; 47(D1): D721-D728, 2019 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-30289549

RESUMO

One of the most fundamental questions in biology is what types of cells form different tissues and organs in a functionally coordinated fashion. Larger-scale single-cell sequencing and biology experiment studies are now rapidly opening up new ways to track this question by revealing substantial cell markers for distinguishing different cell types in tissues. Here, we developed the CellMarker database (http://biocc.hrbmu.edu.cn/CellMarker/ or http://bio-bigdata.hrbmu.edu.cn/CellMarker/), aiming to provide a comprehensive and accurate resource of cell markers for various cell types in tissues of human and mouse. By manually curating over 100 000 published papers, 4124 entries including the cell marker information, tissue type, cell type, cancer information and source, were recorded. At last, 13 605 cell markers of 467 cell types in 158 human tissues/sub-tissues and 9148 cell makers of 389 cell types in 81 mouse tissues/sub-tissues were collected and deposited in CellMarker. CellMarker provides a user-friendly interface for browsing, searching and downloading markers of diverse cell types of different tissues. Furthermore, a summarized marker prevalence in each cell type is graphically and intuitively presented through a vivid statistical graph. We believe that CellMarker is a comprehensive and valuable resource for cell researches in precisely identifying and characterizing cells, especially at the single-cell level.


Assuntos
Bases de Dados Genéticas , Análise de Sequência/métodos , Análise de Célula Única/métodos , Software , Animais , Humanos , Camundongos , Análise de Sequência/normas , Análise de Célula Única/normas
20.
Brief Bioinform ; 20(1): 254-266, 2019 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-28968730

RESUMO

Systematic sequencing of cancer genomes has revealed prevalent heterogeneity, with patients harboring various combinatorial patterns of genetic alteration. In particular, a phenomenon that a group of genes exhibits mutually exclusive patterns has been widespread across cancers, covering a broad spectrum of crucial cancer pathways. Recently, there is considerable evidence showing that, mutual exclusivity reflects alternative functions in tumor initiation and progression, or suggests adverse effects of their concurrence. Given its importance, numerous computational approaches have been proposed to study mutual exclusivity using genomic profiles alone, or by integrating networks and phenotypes. Some of them have been routinely used to explore genetic associations, which lead to a deeper understanding of carcinogenic mechanisms and reveals unexpected tumor vulnerabilities. Here, we present an overview of mutual exclusivity from the perspective of cancer genome. We describe the common hypothesis underlying mutual exclusivity, summarize the strategies for the identification of significant mutually exclusive patterns, compare the performance of representative algorithms from simulated data sets and discuss their common confounders.


Assuntos
Neoplasias/genética , Algoritmos , Neoplasias da Mama/genética , Biologia Computacional/métodos , Simulação por Computador , Bases de Dados Genéticas/estatística & dados numéricos , Epistasia Genética , Feminino , Regulação Neoplásica da Expressão Gênica , Redes Reguladoras de Genes , Genômica/estatística & dados numéricos , Humanos , Bases de Conhecimento , Modelos Genéticos , Fenótipo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...